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Abstract. An application of a self-consistent version of RPA to quantum field theory with broken symmetry
is presented. Although our approach can be applied to any bosonic field theory, we specifically study the
ϕ4 theory in 1+1 dimensions. We show that the standard RPA approach leads to an instability which can
be removed when going to a superior version, i.e. the renormalized RPA. We present a method based on
the so-called charging formula of the many-electron problem to calculate the correlation energy and the
RPA effective potential.
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24.10.Cn Many-body theory

1 Introduction

One central aim of the relativistic heavy-ion program is
to produce highly excited hot and dense matter possibly
constituting a quark-gluon plasma. In such a phase
quarks and gluons should be liberated and chiral sym-
metry should be realized in its Wigner form. A central
theoretical question is thus to have a correct description
of the broken vacuum and of the progressive restoration
of chiral symmetry with increasing temperature and/or
baryonic density. This problem is highly non-perturbative
in nature and the usual perturbative loop expansion
techniques are certainly not sufficient by construction.
These features provide at least one important motivation
to develop tractable non-perturbative methods to be
applied in the context of (effective) field theories with
broken symmetries.

One hope is to try to adapt to quantum-field problems
very well-controlled non-perturbative methods from the
nuclear many-body problem possibly of variational nature.
A very popular method, known as the Gaussian approxi-
mation for interacting bosons, exactly corresponds to the
Hartree-Fock-Bogoliubov mean-field approximation which
constitutes the basic building block of the nuclear many-
body theory i.e. for fermions, see, e.g., [1]. This variational
method has already been applied to theories with a global
symmetry [2] as well as with a local symmetry [3]. Never-
theless, when this HFB approach is applied to a bosonic
O(N) model (i.e. to the linear sigma model) the pion ap-
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pears with a finite mass or, in other words, Goldstone the-
orem is violated as discussed in [4]. As demonstrated in
recent papers, RPA fluctuations are able to generate this
soft mode, known as the spurious mode in the context of
nuclear physics [5,6]. The RPA approach thus appears as a
very promising technique to treat non-perturbative prob-
lems in the context of quantum field theory. However, in its
simplest form, this method is not variational and its pre-
dictions are not always very well under control. In partic-
ular, it is well known that standard RPA has the tendency
to overestimate the attractive correlation energy, at least
in examples of nuclear physics. The purpose of this paper
is therefore two-fold: first, a complete presentation of the
RPA technique is given in the context of the simplest field
theory, namely the λϕ4 theory with a specific application
to the 1+1 dimensional case. The second goal is to develop
the formalism of more elaborated versions of the RPA ap-
proach, namely the so-called renormalized RPA (r-RPA),
which, to our knowledge, has never been done before. Let
us mention that there exist previous attempts to apply
many-body techniques for this specific problem. For in-
stance, Häuser et al. use the cluster expansion of Green’s
functions [7]. Of course other methods, such as lattice cal-
culation, have been employed, see, e.g., [8–10]. Our aim is
not really to compete with these numerical methods but
actually to develop a tractable approach allowing direct
physical interpretations in view of further applications in
the context of chiral or gauge theories. In this preliminary
work our aim is rather modest and limited to the presenta-
tion of the formalism and the discussion of the remaining
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problems to be solved such as the explicit covariance of the
obtained results. We also present the method to calculate
the RPA correlation energy in the context of a field theory
within a Green’s function formalism. One important point
of this paper is to adapt the so-called “charging formula”
method (see, e.g., [11]) for quantum field theory beyond
the standard RPA scheme. Some numerical results are also
obtained showing in particular how to cure the instability
of the standard RPA in the broken-symmetry region.

2 The ϕ4 theory

2.1 The Hamiltonian

We consider the Lagrangian density

L =
1
2
∂µϕ(x) ∂µϕ(x) − 1

2
µ2

0 ϕ
2(x) − b

24
ϕ4(x) , (1)

where µ2
0 is a constant and the bare coupling constant

b = λ/6 is positive for reasons of stability. We decompose
the scalar field ϕ(x) in a classical part or condensate s and
a fluctuating piece φ(x):

ϕ(x) = φ(x) + s, s = 〈ϕ(x)〉 . (2)

The presence of the condensate s indicates a spontaneous
breaking of the underlying ϕ → −ϕ symmetry. Introduc-
ing the conjugate field Π(x), one obtains for the Hamil-
tonian (in d+ 1 dimensions)

H =
∫

ddx

{
1
2
µ2

0 s
2 +

b

24
s4 +

(
µ0 s +

b

6
s3
)
φ(x)

+
1
2

[
Π2(x) + (∂iφ)

2 (x) +
(
µ2

0 +
b

2
s2
)
φ2(x)

]

+
b s

6
φ3(x) +

b

24
φ4(x)

}
. (3)

Putting the system in a large box of volume V = Ld, it
is convenient to work in momentum space and to expand
the fields according to

φ(x) =
1√
V

∑
�q

ei�q·�x φ�q(t) ,

Π(x) = − i√
V

∑
�q

ei�q·�xΠ�q(t) . (4)

The hermiticity of φ(x) and Π(x) imposes φ†�q = φ−�q and
Π†

�q = −Π−�q and canonical equal-time commutation rela-
tions translate into

[
φ�q , Π

†
�q ′
]
= δ�q,�q ′ . (5)

The Hamiltonian can be rewritten as

H = V
(
1
2
µ2

0 s
2 +

b

24
s4
)

+
√
V
∑

�q

(
µ0 s +

b

6
s3
)
φ�q δ�q,0

+
∑

�q

(
Π�qΠ

†
�q + O2

q φ�q φ
†
�q

)
+

1
6

∑
123

V1,2,3 φ1 φ2 φ3

+
1
24

∑
1234

V1,2,3,4 φ1 φ2 φ3 φ4 , (6)

where φi is a shorthand notation for φ�qi
and the three-

body and four-body interactions are given by

V1,2,3 =
b s√
V
δ�q1+�q2+�q3 , V1,2,3,4 =

b

V
δ�q1+�q2+�q3+�q4 .

(7)
The bare single-particle energy appearing in the Hamilto-
nian is

O2
q = �q 2 + µ2

0 +
b

2
s2 . (8)

In the following, we will call H3 and H4 the three-body
and four-body interacting Hamiltonians.

2.2 The Gaussian approximation

In the Gaussian approximation the ground state is rep-
resented by a trial wave function which is a functional of
the field ϕ(�x):

|ψ(ϕ)〉 =
N exp

(
−1
2

∫
ddxddy

(
ϕ(�x)−s)h(�x−�y ) (ϕ(�y )−s)).(9)

The optimal wave function is obtained by minimizing
〈ψ(ϕ)|H|ψ(ϕ)〉 with respect to h(�x − �y ). The resulting
function, which still depends on the condensate s, defines
the Gaussian effective potential. The various minima in s
correspond to the possible phases of the system. Working
in momentum space, one introduces the Fourier transform
of h(�x− �y ) according to

h(�x− �y ) =
∫

ddq ei �q·(�x−�y ) εq . (10)

It is easy to show that the trial ground state is the vacuum
of the canonical destruction operator b�q such that

φ�q =

√
1
2εq

(
b�q + b†−�q

)
, Π�q =

√
εq
2

(
b�q − b†−�q

)
.

(11)
The single-particle excitation of this vacuum have energies
εq which differ from the bare energies Oq. In other words
we have rotated the original bare basis with single-particle
energies Oq into a basis associated to the εq’s through a
Hartree-Fock-Bogoliubov (HFB) transformation. In this
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Fig. 1. Left panel: Gaussian effective potential for various values of the dimensionless coupling constant p. Right panel: value
of the condensate s minimizing the Gaussian effective potential as a function of p.

HFB ground state the energy density is easily calculated
by using the Wick theorem

E0(ε, s) =
1
2
µ2

0 s
2 +

b

24
s4

+
1
2V

∑
�q

(
εq
2

+
O2

q

2εq

)
+
b

8
〈φ2〉2 , (12)

where the scalar density 〈φ2〉 is given by

〈φ2〉 = 1
V

∑
�q

〈φ�q φ
†
�q〉 =

1
V

∑
�q

1
2εq

≡
∫

ddq

(2π)d
1
2εq

.

(13)
Minimization with respect to εq gives the HFB quasi-
particle mass m:

m2 = ε2q − �q 2 = µ2
0 +

b

2
(
s2 + 〈φ2〉) . (14)

It has been demonstrated in d = 3 spatial dimensions that
the above gap equation can be rendered finite by appro-
priate mass and coupling-constant renormalizations [12].
Here we concentrate onto the d = 1 case where the theory
becomes super-renormalizable and only requires a mass
renormalization. We eliminate µ0 in favor of the renor-
malized mass µ according to

µ2
0 = µ

2 − b

2

∫ +Λ

−Λ

dq
2π

1

2
√
q2 + µ2

, (15)

where Λ is a ultraviolet cutoff. The gap equation becomes

m2 = µ2 +
b

2
(
s2 + 〈∆φ2〉µ

)
(16)

with

〈∆φ2〉µ =
∫ +Λ

−Λ

dq
2π

(
1

2
√
q2 +m2

− 1

2
√
q2 + µ2

)
=

− 1
4π

ln
m2

µ2
(17)

which is independent of the cutoff Λ. Re-injecting the so-
lution for the mass m into the expression of the energy
density one gets the effective potential which is also finite,
once the energy of the perturbative vacuum of particles
with mass µ is removed. The result is

E0(s)
µ2

=
1
2
s2 + p s4 +

1
8π

(
m2

µ2
− 1 − m

2

µ2
ln
m2

µ2

)

− 3 p
16π2

(
ln
m2

µ2

)2

, (18)

where

p = b/24µ2

is the dimensionless coupling constant. At low p the effec-
tive potential has a minimum at s = 0: the unbroken phase
is thus stable. Increasing p, a new minimum develops at
finite s corresponding to a meta-stable broken phase. At
a certain critical pc = 2.57 the deformed phase becomes
stable and the system undergoes a first-order phase tran-
sition (see fig. 1) in agreement with [7]. The approach can
be straightforwardly extended to finite temperature using
the so-called statistical variational principle.
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Fig. 2. Left panel: Gaussian effective potential for p = 3.8 for various temperatures T in units of µ. Right panel: value of the
condensate s minimizing the Gaussian effective potential as a function of T (in units of µ) for various values of p.

One obtains for the finite-temperature effective poten-
tial (i.e. the grand potential)

Ω0(s, T )
µ2

=
T

µ

∫
dq
2π

ln
(
1− exp

(εq
T

))
+

1
2
s2 + p s4

+
1
8π

(
m2

µ2
−1−m

2

µ2
ln
m2

µ2

)
− 3 p 〈∆φ2〉2µ(T ) (19)

with

〈∆φ2〉µ(T ) =
∫

dq
2π

(
1 + n(εq/T )

2
√
q2 +m2

− 1

2
√
q2 + µ2

)
,

(20)
where n(x) = 1/(exp(x)−1) is the Bose-Enstein distribu-
tion and the gap equation (16) is unchanged once 〈∆φ2〉µ
is replaced by its finite-temperature expression given just
above. Some numerical results are shown on fig. 2. Choos-
ing p > pc the vacuum is in a broken phase. At a certain
critical temperature Tc one gets a first-order transition
towards the symmetry restored phase.

3 The RPA approach

3.1 The equation-of-motion method (EOM)

The aim of the RPA method is to describe the excitation
spectrum of a Hamiltonian H. The excited states |ν〉 and
the ground state |0〉 are defined by the conditions

|ν〉 = Q†
ν |0〉, Qν |0〉 = 0 . (21)

Minimizing Eν = 〈ν|H|ν〉/〈ν|ν〉 with respect to the oper-
ators Qν , one gets the following set of equations [1,13]:

〈0| [δQν ,
[
H,Q†

ν

]] |0〉 = Ων 〈0|
[
δQν , Q

†
ν

] |0〉 , (22)

where Ων = Eν − E0 is the excitation energy. Equa-
tion (22) is supplemented by the conditions

〈0|[H,Qν

]|0〉 = 0 (23)

which will determine the mean-field basis. Equation (23)
is a natural complement to eq. (22), since both equations
hold in the exact case [14]. In general in this EOM ap-
proach, the excitation operators are searched only within
a limited domain. They are usually taken in the form

Q†
ν =

∑
a

(
Xν

a A
†
a − Y ν

a A−a

)
, (24)

where the Aa constitute a set of non-Hermitian operators
labeled by a set of quantum numbers a (for instance mo-
mentum or isospin state). The RPA equations (22) now
become matrix equations which allow to determine the
excitation energy and the X and Y amplitudes (summa-
tion over repeated indices is understood):( Aab , Bab

B∗
−a−b , A∗

−a−b

)(
Xν

b
Y ν

b

)
= Ων Nab

(
Xν

b
Y ν

b

)
(25)

with the matrix elements given by the double commuta-
tors

Aab = 〈0|
[
Aa,

[
H,A†

b

]]
|0〉 ,

Bab = −〈0| [Aa, [H,A−b]] |0〉 (26)

and the norm matrix is

Nab =


 〈0|

[
Aa, A

†
b

]
|0〉 , 〈0| [Aa, A−b] |0〉

−〈0| [Aa, A−b] |0〉 , −〈0|
[
Aa, A

†
b

]
|0〉


 . (27)
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The previous conditions (23) translate into equations
having the form of gap equations:

〈0|[H,Aa

]|0〉 = 0 . (28)

In practice the quality of the RPA scheme depends
on the approximation which are made. Firstly the
larger is the space of Aa operators, the better is the
accuracy of the method. Here, in practice we will limit
ourselves to single- and pair-boson operators namely
A†

a = {b†�q, b†�q b†�q ′ , b
†
�q b�q ′}. Secondly, one crucial point is

the calculation of the ground-state matrix elements of
the double commutators and of the matrix elements
appearing in the gap equations. Calculating the matrix
elements on the true RPA ground state constitutes
the self-consistent RPA (SCRPA). In practice this is a
formidable task both formally and numerically which
only has been fully achieved in a very limited number of
simple model cases. In the most common approximation
(i.e. the standard RPA), the ground-state matrix ele-
ments entering the RPA equations are calculated on the
mean-field ground state. In our case it coincides with the
Gaussian or HFB ground state discussed above. There is
an intermediate approximation scheme, called in nuclear
physics renormalized RPA (r-RPA)[13,15–17], which al-
lows to incorporate part of the correlations in the ground
state. In sect. 4, we will propose the first application of
this method in the context of quantum field theory.

3.2 The Dyson equation approach (DEA)

We present an alternative but equivalent formulation
of the RPA scheme based on a Green’s function (GF)
approach [18]. Although equivalent in principle to the
equation-of-motion approach, this DEA method is more
convenient for quantum field theory. We define the time-
ordered Green’s functions:

Ga,b̄(t, t
′) = −i〈0|T

(
Aa(t) , A

†
b(t

′)
)
|0〉 ,

Ga,−b(t, t′) = −i〈0|T (Aa(t) , A−b(t′)) |0〉 ,
G−ā,b̄(t, t

′) = −i〈0|T
(
A†

−a(t) , A
†
b(t

′)
)
|0〉 ,

G−ā,−b(t, t′) = −i〈0|T
(
A†

−a(t) , A−b(t′)
)
|0〉 . (29)

We introduce the energy representation of these GF ac-
cording to

G(t, t′) =
∫

dE
2π
e−i E (t−t′)G(E) (30)

and the matrix

Ga,b(E) =
(
Ga,b̄(E) , Ga,−b(E)
G−ā,b̄(E) , G−ā,−b(E)

)
. (31)

The RPA equations have now the form of a set of coupled
integral equations for the various GF:

E Ga,b(E) = Na,b +
∑
c,d

( Aac , Bac

B∗
−a−c , A∗

−a−c

)
N−1

c,d Gd,b(E)

(32)

with

Aab = 〈0|
[
[Aa,H] , A†

b

]
|0〉 ,

Bab = −〈0| [[Aa,H] , A−b] |0〉 . (33)

Notice that the double commutators are ordered differ-
ently from the ones obtained in the equation-of-motion
method. In practice, it can been shown that they are al-
ways identical.

4 The RPA and the renormalized RPA
applied to the ϕ4 theory

4.1 Solution of the RPA problem

We will limit ourselves to the case where the A operators
are only one-body and two-body operators. We introduce
creation b†β and destruction operators bβ depending on the
parameters κβ according to

bβ =
√
κβ

2
φβ +

√
1

2κβ
Πβ , (34)

or equivalently

φβ =

√
1

2κβ

(
bβ + b†−β

)
, Πβ =

√
κβ

2

(
bβ − b†−β

)
.

(35)
By construction they obey standard canonical commuta-
tion relation for boson creation and destruction operators:

[bβ , b
†
β′ ] = δβ,β′ , [bβ , bβ′ ] = 0 . (36)

The β’s represent the quantum numbers of the created
boson state; here this is simply a momentum index and
−β represents the opposite momentum.

The excitation operators A†
a will be the one-body op-

erators b†α and the two-body operators b†β b
†
β′ and b†β b−β′

with β �= β′ for the “particle-hole” operators. The gap
equation 〈[H, bβ ]〉 = 0 will give the extrema in the con-
densate s of the vacuum energy. Since we will calculate
the effective potential giving directly the true minimum
(i.e. the stable phase) we will not use it here. The most
interesting non-trivial gap equation is 〈[H, bβ b−β ]〉 = 0
which constrains the basis, that is the κβ parameters. This
gap equation gives (〈...〉 stands for the ground-state expec-
tation value)

〈ΠβΠ
†
β〉 − ε2β 〈φβφ

†
β〉 =

1
2

∑
1,2

〈φβφ
†
1φ

†
2〉conn V1,2,−β

+
1
6

∑
1,2,3

〈φβφ
†
1φ

†
2φ

†
3〉connV1,2,3,−β , (37)

where the suffix “conn” means connected operators which
contain exclusively correlated expectation values:

〈ABCD〉conn = 〈ABCD〉 − 〈AB〉〈CD〉
− 〈AC〉〈BD〉 − 〈AD〉〈BC〉 (38)
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and εβ is given by

ε2β = �q2β + µ2
0 +

b

2
s2 +

b

2
〈φ2〉 (39)

with

〈φ2〉 = 1
V

∑
�q

〈φ�q φ
†
�q〉 =

1
V

∑
�q

1
2κq

〈1 + 2b†�q b�q + b†�q b
†
−�q + b�q b−�q〉. (40)

The εβ ’s can be seen as the generalized mean-field single-
particle energies. But at variance with the Gaussian case
these energies depend on the correlated self-consistent
scalar density 〈φ2〉.

Standard RPA

In the standard RPA, we omit the connected parts. We
thus get from the gap equation (37)

〈ΠβΠ
†
β〉 − ε2β 〈φβφ

†
β〉 = 0 (41)

and take for 〈φβφ
†
β〉 its value in the Gaussian HFB ground

state. This implies (see eq. (35))

κβ = εβ . (42)

The basis is fixed and coincides with the HFB basis. Sim-
ilarly all the matrix elements appearing in the calculation
of the double commutators and the norm matrix are sim-
ply obtained by using the Wick theorem on the Gaussian
ground state.

Renormalized RPA

In renormalized RPA (r-RPA), one still systematically
omits the correlated expectation values. Hence, the gap
equation (41) remains valid. However, the scalar density is
not yet fixed. It has to be determined self-consistently. The
problem of its evaluation (in a non-relativistic many-body
problem for Fermi systems it corresponds to the occupa-
tion numbers) is one of the subtleties of self-consistent
RPA (SCRPA). We will come to this problem later on.
The gap equation can be rewritten as

(κ2
β−ε2β) 〈1+2 b†β bβ〉 = (κ2

β+ε
2
β) 〈b†β b†−β + bβ b−β〉 . (43)

The basis κβ is not yet totally fixed. However, we have
checked that the result of the r-RPA calculation does not
depend on its choice, provided the above gap equation is
satisfied. Thus, we can choose it as κβ = εβ , i.e. the gen-
eralized mean-field basis. This choice has the merit of sig-
nificantly simplifying the lengthy calculation of the double
commutators. In that case one has

〈b†β b†−β〉 = 〈bβ b−β〉 = 0 . (44)

In SCRPA this last property has to be always satisfied
because the b†β b

†
−β operators are just linear combinations

of the genuine RPA excitation operators Q†
ν whose ex-

pectation values on the true RPA ground state vanish by
construction.

The many-body operator expectation values are also
calculated using the Wick theorem but the resulting two-
body operator matrix elements depend on the various oc-
cupation numbers. In other words all the ground-state ma-
trix elements entering the double commutators and norm
matrices are expressible in term of the fixed momentum
densities Nβ = 〈φβφ

†
β〉. We display here some examples:

〈bβb−β〉 =
κ2

β − ε2β
2εβ

Nβ ,

〈b†βbβ〉 = −1
2
+
κ2

β + ε2β
2εβ

Nβ ,

〈b†1b†2b3b4〉 = 〈b†1b1〉〈b†2b2〉 (δ1,3 δ2,4 + δ1,4 δ2,3)

+〈b†1b†−1〉〈b3b−3〉 (δ1,−2 δ3,−4) . (45)

We do not give the details of the calculation to obtain
the solution of the RPA problem (32). Even if we limit
ourselves to one- and two-body operators, it represents
quite a lot of algebra. The results for the various GF are
listed in the appendix. Here we give only the GF relative
to the field operator φ�P . For the one-particle GF, i.e. the
φ particle propagator, one obtains

Gφ�P ,φ�P ′ (E) ≡ δ�P , �P ′ G(E, �P ) ,

G(E, �P ) =
(
E2 − ε2�P − Σ(E, �P )

)−1

, (46)

where the mass operator has the following form:

Σ(E, �P ) =
b2 s2

2
Ĩ(E, �P ) ,

with

Ĩ(E, �P ) =
I(E, �P )

1 − b
2I(E, �P )

(47)

and the two-particle loop has the explicit expression

I(E, �P ) =
∫

d�k1 d�k2
(2π)d

δ(d)
(
�P − �k1 − �k2

)

×
[
ε1 + ε2
2 ε1 ε2

ε1 N1 + ε2 N2

E2 − (ε1 + ε2)
2 + iη

− ε1 − ε2
2 ε1 ε2

ε1 N1 − ε2 N2

E2 − (ε1 − ε2)2 + iη

]
. (48)

Notice that correlations are present in this expression
through the densities Ni = 〈φiφ

†
i 〉. We will see in sub-

sect. 4.4 how to calculate these densities in r-RPA. For
the 1p-2p and 2p-2p GF we give the particular combina-
tions which are directly relevant for the calculation of the
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1

24V

∫
idE

(2π)
ei E η+

[∑
1234

V1,2,−3,−4

(
G

φ3φ4 , φ
†
1φ

†
2
(E) − G0

φ3φ4 , φ
†
1φ

†
2

)]
=

1

24

∫
d
P

(2π)d

∫
idE

(2π)
ei E η+

[
b2 I2(E, 
P )

1 − b
2

I(E, 
P )
+ b3 s2

(
I(E, 
P )

1 − b
2

I(E, 
P )

)2

G(E, 
P )

]
(51)

effective potential∑
123

V1,−2,−3Gφ2φ3 , φ†
1
(E) =

V

∫
d�P
(2π)d

2Σ(E, �P )G(E, �P ) ,∑
1234

V1,2,−3,−4Gφ3φ4 , φ†
1φ†

2
(E) =

V

∫
d�P
(2π)d

b

[
2 I(E, �P ) + b

I2(E, �P )

1 − b
2 I(E, �P )

+ b2 s2
(

I(E, �P )

1 − b
2 I(E, �P )

)2

G(E, �P )
]
. (49)

The reader may check that these results have a very clear
diagrammatic interpretation (see fig. 4 in the following).
From these expressions, one can get the expectation value
of the three-body Hamiltonian by taking the appropriate
t′ → t limit of the GF

〈H3〉/V =
1
6

∫
d�P
(2π)d

∫
idE
(2π)

ei E η+
2Σ(E, �P )G(E, �P ) .

(50)
The correlated part of the four-body Hamiltonian is ob-
tained with the same technique but the uncorrelated GF
has to be removed. As we will see below, the expression of
the correlated energy will involve the following quantity:

see eq. (51) above

where the first-order term (i.e. the one-loop term I(E, �P )
of eq. (49)) has been removed.

4.2 The effective potential

The starting Hamiltonian equations (6), (7) contains a
free Hamiltonian of bare particles with energy O�q and an
interacting Hamiltonian H3 +H4. To simplify the writing
we now replace the momentum labels �q by integers i and
omit the linear term in φ which does not directly play a
role in the formal manipulations:

H = V
(
1
2
µ2

0 s
2 +

b

24
s4
)

+
∑
1

1
2

(
Π1Π

†
1 + O2

1 φ1 φ
†
1

)
+ H3 + H4. (52)

In the RPA approach, the contribution of the interact-
ing part of the Hamiltonian systematically transforms, in

the expressions of the various double commutators, the
bare single-particle energy into the generalized mean-field
single-particle energy (39) which is finite after mass renor-
malization in one spatial dimension:

O2
1 → ε21 = O2

1 +
b

2
〈φ2〉R (53)

where 〈φ2〉R = (1/V )
∑〈φ1 φ

†
1〉 is in principle the corre-

lated vacuum density (see subsect. 4.4) except in standard
RPA where it is taken on the Gaussian ground state.
This suggests to rewrite the Hamiltonian as

H = H0 + Hint (54)

with

Hint = H3 + H4 − b

4
〈φ2〉R

∑
1

: φ1 φ
†
1 :ε −V b

8
〈φ2〉2ε .

(55)
〈φ2〉ε is the expectation value taken on the ground state
of the mean-field quasi-particles with energies ε1 and
: ... :ε is the normal ordering with respect to this vac-
uum, namely:

: φ1 φ
†
1 :ε= φ1 φ

†
1 − 〈φ1 φ

†
1〉ε . (56)

We use again the notation 〈φ2〉R for the scalar density.
In renormalized RPA this scalar density is in principle
the correlated one. In standard RPA the quantity 〈φ2〉R
appearing in Hint is identified with the mean-field scalar
density 〈φ2〉ε and ε refers to the Gaussian HFB mean field.
In that case, the interacting Hamiltonian reduces to

(Hint)standard RPA = H3 + : H4 :ε . (57)

The H0 Hamiltonian is obtained as H −Hint:

H0 = V
(
1
2
µ2

0 s
2 +

b

24
s4
)

+
∑
1

1
2

(
Π1Π

†
1 +O2

1 φ1 φ
†
1

)

+
b

4
〈φ2〉R

∑
1

: φ1 φ
†
1 :ε +V

b

8
〈φ2〉2ε . (58)

Again in the case of standard RPA the self-consistent
scalar density 〈φ2〉R is replaced in the above expression by
the Gaussian HFB scalar density 〈φ2〉ε. H0 can be rewrit-
ten as

H0 = E0 +
∑
1

1
2

(
: Π1Π

†
1 :ε + ε21 : φ1 φ

†
1 :ε

)
. (59)

It has the form of a free Hamiltonian for quasi-particles
with mass m (see eq. (39)), i.e. m2 = ε2�q − �q 2. In one
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spatial dimension, this mass is rendered finite by a simple
mass renormalization:

m2 = µ2 +
b

2
s2 +

b

2

(
〈φ2〉R −

∫ +Λ

−Λ

dq
2π

1

2
√
q2 + µ2

)
.

(60)
E0 is the generalized mean-field vacuum energy

E0

V
=

1
2
µ2

0 s
2 +

b

24
s4 +

b

8
〈φ2〉2ε

+
∑
1

1
2

(
〈Π1Π

†
1〉ε + O2

1 〈φ1 φ
†
1〉ε

)
=

1
2
µ2

0 s
2 +

b

24
s4 +

1
2V

∑
�q

(
εq
2
+

O2
q

2εq

)
+
b

8
〈φ2〉ε =

µ2

[
1
2
s2 + p s4 +

1
8π

(
m2

µ2
− 1 − m

2

µ2
ln
m2

µ2

)

− 3 p
16π2

(
ln
m2

µ2

)2 ]
. (61)

We may notice that E0/V is formally equal to the Gaus-
sian energy density (12), (18). However, the single-particle
energy εq and the corresponding quasi-particle massm en-
tering its expression now depends on the correlated scalar
density 〈φ2〉, in the self-consistent version.

〈H3〉 and 〈H4〉 can be calculated once the RPA
2p-1p and 2p-2p GF are known (see the end of the previ-
ous subsection). But to calculate the total energy we also
need the expectation value on the RPA ground state of the
one-body operators φ�qφ

†
�q and Π�qΠ

†
�q which are not directly

given by the RPA calculation. This is the well-known dif-
ficulty of RPA, even in its simplest standard form, which
frequently appears in the context of nuclear physics. In
other words the calculation of the kinetic energy in RPA
needs further manipulations. One possible way to achieve
this is to use the so-called charging formula [11] for the
calculation of the correlation energy (i.e. the deviation
from the mean-field energy E0) which has been histor-
ically introduced for the electron gas problem. Here we
will show how to adapt the charging formula beyond the
standard RPA, namely in the r-RPA case in the context
of a quantum field theory.

The idea is to introduce a Hamiltonian where the cou-
pling constant is varying between zero and its physical
value. We thus define the auxiliary Hamiltonian

H ′(ρ) = H0 + ρHint , H ′(ρ = 1) = H . (62)

The first thing to do is to solve the RPA problem for the
H ′(ρ) Hamiltonian. For this purpose, one can notice that

its explicit form is given by

H ′(ρ) = V
(
1
2
µ2

0 s
2 +

b

24
s4
)

+
∑
1

1
2

(
Π1Π

†
1 + O2

1 φ1 φ
†
1

)
+ ρ(H3 + H4)

+ (1−ρ)
(
b

4
〈φ2〉R

∑
1

: φ1 φ
†
1 :ε +V

b

8
〈φ2〉2ε

)
.

(63)

Up to constant terms, the Hamiltonian H ′(ρ) can be
rewritten as

H ′(ρ) = V
(
1
2
µ2

0 s
2 +

b

24
s4
)
+
∑
1

[
1
2
Π1Π

†
1

+
1
2

(
O2

1 +
b

2
(1−ρ)〈φ2〉R

)
φ1 φ

†
1

]
+ ρ (H3 + H4) . (64)

For what concerns the solution of the H ′(ρ) RPA problem
(in practice for the calculation of the commutators and
double commutators entering the RPA equations) one has
to make the following modifications with respect to the H
problem:

H → H ′(ρ) ,

O2
1 → O2

1ρ = O2
1 +

b

2
(1 − ρ) 〈φ2〉R ,

H3 +H4 → ρ (H3 + H4) . (65)

The single-particle energy occurring in the self-consistent
RPA GF will be thus modified according to

ε21 → ε21ρ = O2
1ρ +

b

2
ρ 〈φ2〉Rρ =

O2
1 +

b

2
(
(1− ρ)〈φ2〉R + ρ 〈φ2〉Rρ

)
=

ε21 +
b

2
ρ
(〈φ2〉Rρ − 〈φ2〉R

)
, (66)

where 〈φ2〉ρ is the scalar density in the correlated RPA
ground state of H ′(ρ). Again the notation 〈φ2〉Rρ is em-
ployed: in r-RPA, it coincides with the scalar density cal-
culated on the self-consistent ground state of the H ′(ρ)
Hamiltonian, while in the standard RPA, it coincides with
the Gaussian density, i.e. calculated on the ground state
of H0. The solution of the H ′(ρ) r-RPA problem is ob-
tained formally from the solution of the H r-RPA problem
(eq. (46)-(51)) by simply replacing ε1 by ε1ρ, the coupling
constant b by ρ b and N1 = 〈φ1φ

†
1〉R by N1ρ = 〈φ1φ

†
1〉Rρ

calculated self-consistently with the H ′(ρ) Hamiltonian.
In the standard RPA all the expectation values of φ2

are taken on the Gaussian ground state. In this case the
energies ερ remain identical to the Gaussian single-particle
energies ε: standard RPA: 〈φ2〉Rρ=〈φ2〉R=〈φ2〉ε, ε1ρ=ε1.

Once the r-RPA problem is solved one can calcu-
late the RPA ground-state energy relative to the starting
Hamiltonian. Since both H0 and Hint are independent of
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ρ and since H ′(ρ = 1) coincides with the original H one
can apply the charging formula. The RPA ground state
energy can be obtained as

ERPA = E0 +
∫ 1

0

dρ
ρ

〈ρHint〉ρ , (67)

where E0 is the already calculated generalized mean-field
energy. Using the Wick theorem with respect to the vac-
uum of quasi-particles with energies ερ, the correlated part
can be rewritten as

〈ρHint〉ρ = 〈ρH3〉ρ + 〈ρ : H4 :ερ
〉ρ

−V ρ b
8

(〈φ2〉ερ
−〈φ2〉ε

)2 − V ρ b
4

(〈φ2〉R−〈φ2〉ερ

)
×
(
1
V

∑
1

〈φ1φ
†
1〉ρ − 〈φ2〉ε

)
. (68)

In this formula 〈φ2〉R is as before the self-consistent
scalar density of the original H. 〈φ2〉ε is the scalar density
on the generalized mean-field vacuum (vacuum of quasi-
particles with energy ε�q) in the H problem and 〈φ2〉ερ

cor-
responds to the equivalent quantity for theH ′(ρ) Hamilto-
nian. The remaining expectation values noted 〈 .. 〉ρ have
to be taken on the r-RPA ground state of H ′(ρ). The cal-
culation of these latter expectation values are made using
eqs. (46)-(51) where all the quantities are now relative to
the H ′(ρ) problem as explained before.
In the particular case of the standard RPA the extra-
term in the expression of the correlation energy disappears
since, following eq. (57), one has

〈ρHint〉ρ = 〈ρH3〉ρ + 〈ρ : H4 :ε〉ρ . (69)

As we will see explicitly in the next subsection the ex-
pectation value of the normal-ordered Hamiltonian will
involve an integration over the calculated Green’s func-
tions. In the case of the standard RPA the ρ integration
can be done analytically. This is not the case in the r-RPA
since these Green’s functions will involve the ερ’s and the
self-consistent densities Nρ which depend explicitly on ρ.

4.3 Results in standard RPA in 1 + 1 dimension

Single-particle mode

The RPA single-particle mode ωP with momentum �P is
obtained as the solution of the equation see, e.g., eq. (46):

ω2
P = ε2P + Σ(E = ωP , �P ) . (70)

In the standard RPA, the densities are simply taken as
N1 = 1/2ε1, where the ε1’s are the Gaussian single-
particle energies. In that case I(E, �P ) (eq. (48)) and con-
sequently Σ(E, �P ) (eq. (47)) are explicitly covariant in the
sense that they depend only on E2 − �P 2 and not on E and
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Fig. 3. Squared standard RPA mass (in unit of µ2) as a func-
tion of s.

�P separately. After a simple boost-like change of variables
one can show that

I(E, �P ) ≡ I(E2 − �P 2) =∫
d�t

(2π)d
1
εt

1

E2 − �P 2 − 4 ε2t + iη
. (71)

Consequently, the RPA mode has a dispersion relation
which is ω2

P = M2 + �P 2. The mass M of the single-
particle RPA mode is thus the solution of the equation

M2 = m2 + Σ(E2 − �P 2 =M2) . (72)

In one spatial dimension the RPA mass operator is finite
and there is no need of further coupling-constant renor-
malization. In fig. 3 the result of the calculation for M in
one spatial dimension is shown for various values of the
dimensionless coupling constant p as a function of s. It is
apparent that for p larger than a certain value the RPA
equation may have an imaginary solution. Such a feature,
which can appear in RPA, simply means that the HFB
ground state is unstable. Hence for that particular the-
ory one has to go to a superior version of the HFB-RPA
approach.

Correlation energy

Although the standard RPA leads, in this particular the-
ory, to an instability in a certain range of coupling con-
stants, it is however interesting to look at the expression
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of the correlation energy at least at a formal level. We
divide the correlation energy density in three pieces

Ecorr

V
=
E

(3)
corr

V
+
E

(4c)
corr

V
+
E

(4nc)
corr

V
. (73)

According to eqs. (50), (67), the piece corresponding to
the three-body Hamiltonian reads

E
(3)
corr

V
=
∫ 1

0

dρ
ρ

∫
d�P
(2π)d

∫
idE
(2π)

ei E η+ ρ2 b2 s2

6

× I(E, �P )

1 − ρ b
2 I(E, �P )

×
(
E2− �P 2−m2− ρ

2 b2 s2

2
I(E, �P )

1− ρ b
2 I(E, �P )

)−1

. (74)

Notice that, as mentioned before, the ρ integration can be
performed analytically. It is convenient to transform the
energy integration into an integration on the imaginary
axis (Wick rotation) by making the change of variable
E = i z. In the usual RPA, the loop I(E, �P ) and thus
the whole integrand h3 actually depends only on E2− �P 2.
After the Wick rotation it depends only on S = z2 + �P 2

and the momentum integration can be done analytically
in 1 + 1 dimension

∫ +∞

−∞

dP
2π

∫
idE
(2π)

eiEη+
h3(E2 − �P 2) = −

∫ ∞

0

dS
4π
h3(−S) .

(75)

For what concerns the four-body interacting piece we
start from the explicit form of its normal ordering with
respect to the ε basis

〈: H4 :ε〉 = b

24V
√∏

i 2εi
δ1+2+3+4

×
(〈
b†1 b

†
2 b

†
3 b

†
4 + b−1 b−2 b−3 b−4+4 b

†
1 b

†
2 b

†
3 b−4

+4 b†1 b−2 b−3 b−4 + 6 b†1 b
†
2 b−3 b−4

〉)
, (76)

where summation over repeated indices is now omitted.
As explained in subsect. 4.1, these matrix elements can
be evaluated as an energy integral of two-particle Green’s
functions whose explicit expressions are given in the ap-
pendix. Noticing that all the matrix elements 〈b†b†b†b〉 are
identically zero, it is convenient, after standard manipu-
lations, to split 〈: H4 :ε〉 into two pieces:

〈: H4 :ε〉 = 〈: H4 :ε〉(c) + 〈: H4 :ε〉(nc) ,

〈: H4 :ε〉(c) = b

24V
√∏

i 2εi
δ1+2+3+4

×
(
〈(b†1 b†2 + b−1 b−2) (b−3 b−4 + b†3 b

†
4)〉

−2 δ1+3 δ2+4 (1 + 2 〈b†1 b1〉)
)
=

b

24V

∫
idE
(2π)

ei E η+
[
δ1+2−3−4

×
(
Gφ3φ4 , φ†

1φ†
2
(E)−G0

φ3φ4 , φ†
1φ†

2

)]
,

〈: H4 :ε〉(nc) =
b

24V
√∏

i 2εi
4
〈
b†1 b

†
2 b−3 b−4

〉
=

b

24V

∫
idE
(2π)

eiEη+
[
δ1+2−3−4Gb3b4,b†1b†2

(E)
]
,

(77)

where the suffices (c) and (nc) stand for covariant and
non-covariant in a sense to be discussed just below. It is
important to notice that the above result remains valid
even in the case of the r-RPA, where the occupation num-
bers 〈b†b〉 do not vanish. Using the results of the appendix
and the charging formula, the corresponding contributions
to the correlation energy can now be obtained:

E
(4c)
corr

V
=
∫ 1

0

dρ
ρ

∫
d�P
(2π)d

×
∫
idE
(2π)

ei E η+
I2(E , �P )F (E , �P , ρ) , (78)

E
(4nc)
corr

V
=
∫ 1

0

dρ
ρ

∫
d�P
(2π)d

×
∫
idE
(2π)

ei E η+
I(1) 2(E, �P )F (E, �P , ρ) , (79)

where the ρ integration can be again performed analyti-
cally, in standard RPA. F (E , �P , ρ) has the explicit ex-
pression

F (E , �P , ρ) ≡ F (E2 − �P 2, ρ) =

1
24

(
ρ2 b2

1 − ρ b
2 I(E, �P )

+
ρ3 b3 s2(

1 − ρ b
2 I(E, �P )

)2
×
(
E2− �P 2−m2− ρ

2 b2 s2

2
I(E, �P )

1− ρ b
2 I(E, �P )

)−1 )
. (80)

The contribution E(4c)
corr is explicitly covariant in the sense

that the integrand depends only on E2 − �P 2 and the trick
of eq. (75) can be applied again. For what concerns E(4nc)

corr ,
the explicit calculation is more delicate since

I(1)(E, �P ) =
∫

d�k1 d�k2
(2π)d

δ(d)
(
�P − �k1 − �k2

)
2 ε1 2 ε2

× 1
E − ε1 + ε2 + iη

, (81)
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Fig. 4. Diagrammatic view of the correlation energy. In the actual calculation, the RPA one-particle propagator (thick line) is
replaced by the mean-field one.
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Fig. 5. Left panel: Effective potential for various values of the dimensionless coupling constant p in standard RPA. Right panel:
value of the condensate minimizing the standard RPA effective potential as a function of p.

appearing in eq. (79), depends separately on E2 and P 2.
However, as it is familiar in nuclear physics, E(4nc)

corr which
involves expectation values of the b†b†bb’s is of higher or-
der in the Y amplitudes than E(4c)

corr involving bbbb ground-
state matrix elements. Indeed, it can be checked analyti-
cally that to leading order in the interaction (i.e. replacing
F (E, �P , ρ) by a constant value ρ2b2/24), E(4nc)

corr identically
vanishes.

Hence, we find that the correlation energy contains a
piece, E(4nc)

corr , which is manifestly non-covariant even in
the standard RPA . This problem has not been pointed
out before, since, to our knowledge, the RPA correlation
energy has never been calculated in a case of a relativistic
theory for bosons. We have neglected this contribution in
our preliminary numerical estimate for the reasons given
just above. Nevertheless, we give the explicit result, involv-
ing a four-dimensional integration, of this non-covariant
contribution. After some manipulations and change of in-
tegration variables, one obtains

E
(4nc)
corr

V
=
∫ 1

0

dρ
ρ

∫ ∞

0

dS
2π2

×
∫ π/2

0

dθ
(
S cos2 θ J2(S , θ) − I2(−S)

)
F (−S), (82)

with

J(S , θ) = −
∫

dt
2π

1

εt

√
4ε2t + S sin2 θ

1
S + 4 ε2t

(83)

to be compared with

I(−S) = −
∫

dt
2π

1
εt

1
S + 4 ε2t

. (84)

As mentioned above there is an instability of the HFB
ground state against RPA fluctuations which makes the
correlation energy divergent. However, to have a first idea
of the influence of the RPA fluctuations we replace in the
above expressions for the correlation energy the RPA one-
particle propagator by the mean-field one. This is illus-
trated in fig. 4 where a diagrammatic interpretation of
the RPA correlation energy is shown. Adding this corre-
lation energy to the mean-field energy E0 one obtains the
RPA effective potential, i.e. the RPA energy versus the
condensate s for various values of the dimensionless cou-
pling constant p. One gets a second-order phase transition
with a critical coupling pc = 1.8 (see fig. 5). This has to be
compared with the lattice result [9] and cluster expansion
technique [7] showing a second-order transition, respec-
tively, at pc = 2.55 and pc = 2.45. It is fair to mention
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that the neglected non-covariant contribution E4c
corr is re-

pulsive and will likely push the critical coupling constant
to a higher value closer to the lattice result. Although this
result is encouraging, it is obviously needed to go beyond
the standard RPA to eliminate the unphysical instability
mentioned above and seen in fig. 3.

4.4 Results in renormalized RPA in 1 + 1 dimension

Single-particle mode

In view of the calculation of the correlation energy we
have now to solve the RPA problem for any value of ρ.
The main problem is thus to determine the self-consistent
N�q,ρ ≡ 〈φ�qφ

†
�q〉ρ. One very usual possibility is to calculate

it self-consistently according to

N�Pρ =
∫
idE
2π

eiEη+
Gρ(E, �P ) , (85)

where Gρ(E, �P ) is the one-particle propagator for the
H ′(ρ) problem. One serious difficulty is that covariance
is now lost in the sense that the loop integral Iρ(E, �P )
and consequently the mass operator Σρ(E, �P ) depends
separately on E and �P due to the presence of the den-
sity N in its expression. This is certainly a weakness of
the present approach. However, as discussed above, even
standard RPA seems to have problems with covariance so
we think that this additional difficulty simply reflects the
fact that there is a general problem of RPA with respect
to covariance. Further work is needed to clarify this point.
On the other hand, one natural possibility to recover co-
variance consists in imposing that the correct Iρ(E, �P ) is
obtained through its CM expression according to

Iρ(E, �P ) ≡ Iρ(E2 − �P 2) =∫
dt
2π

2Ntρ

E2 − �P 2 − 4 ε2tρ + iη
. (86)

Lets us call ΩPρ =
√
M2

ρ + P 2 the RPA single-particle
mode which is the solution of the equation

Ω2
Pρ = ε

2
Pρ + Σρ(E2 − �P 2 =M2

ρ ) . (87)

In the quasi-particle approximation, the solution for
NPρ is

NPρ ≡ 〈φ�Pφ
†
�P
〉ρ = 1

2ΩPρ
. (88)

The self-consistent equation for the density thus becomes
an equation for the mass of the RPA single-particle mode
which explicitly reads

M2
ρ = m2

ρ +
ρ2 b2 s2

2

(
Iρ

1 − ρ b
2 Iρ

)
(E2−P 2 =M2

ρ ) (89)
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Fig. 6. Squared r-RPA mass as a function of s.

with the generalized mean-field single-particle mass
given by

m2
ρ = µ2 +

b

2
s2 +

b

2

(
〈φ2〉 −

∫ +Λ

−Λ

dq
2π

1

2
√
q2 + µ2

)

+
ρ b

2
(〈φ2〉ρ − 〈φ2〉) , (90)

which follows directly from (66). Hence we see that the
equations for the generalized mean-field energy and for
the single-particle RPA mode are now coupled, due to the
presence of the self-consistent scalar density 〈φ2〉. They fi-
nally reduce to determine Mρ. The procedure to solve the
resulting equation at a given value of b and s is the follow-
ing. We first solve the equation for ρ = 1, which gives the
RPA mode mass M , the densities NP , 〈φ2〉 = ∑

P NP /V
and the mean-field mass m. Once this is done we solve
for Mρ which allows to obtain mρ and ερP =

√
P 2 +m2

ρ.
We show on fig. 6 the results of the calculation for the

RPA mass M . We see that the instability problem has
now disappeared. This is a first important success of the
renormalized RPA.

Correlation energy

The calculation of the correlation energy can now be done
by assuming again covariance in the sense explained just
above. The results of eqs. (74), (75), (78), (79), (82) can
be applied by just making in the final expressions, the
replacements

I(−S) → Iρ(−S) = −
∫

dt
2π

2Ntρ

S + 4 ε2tρ
, (91)
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J(S , θ) → Jρ(S , θ) = −
∫

dt
2π

1√
4ε2tρ + S sin2 θ

× 2Ntρ

S + 4 ε2tρ
. (92)

In fig. 7, we show the effective potential for various values
of the dimensionless coupling constant p, again neglecting
the non-covariant piece (82) for the reasons explained
above. For p below � 2 there is only one minimum
at s = 0, i.e. corresponding to a symmetry unbroken
phase. Beyond this value, a weakly pronounced minimum
starts to develop at finite s. The symmetry broken
phase becomes stable at pc � 2.3 indicating a very weak
first-order transition. It is satisfying to see that the value
of pc has moved in the right direction towards the value
given by cluster expansion [7] and lattice calculation [9].
It remains to calculate the non-covariant contribution
to see if it is able to transform this weak first-order
transition into a genuine second-order one. Work in this
direction is now in progress.

4.5 Towards full renormalized RPA

In the previous section we have presented a version
of r-RPA which incorporates RPA correlations in the
scalar density which are induced by the presence of a
non-vanishing condensate. However, in the usual non-
symmetry broken case this version is still equivalent to the
standard RPA. To go beyond standard RPA is, as already
stated, a difficult problem. One possibility is to introduce
the dynamical mass operator modifying the single-particle

propagator. This mass operator is of the form

Σ(d)
α (t, t′) = 2 εα 〈−i T ([H, bα](t), [H, b†α](t′))〉irr =
1
36

∑
123

∑
1′2′3′

Vα,−1,−2,−3

×〈−i T (φ1φ2φ3(t) , φ
′†
1 φ

′†
2 φ

′†
3 (t

′)
)〉Vα,−1′,−2′,−3′ . (93)

Applying the perturbation theory on top of the already-
calculated one-particle propagator, one obtains for the full
propagator

GRPA
α (t, t′) = Gα(t, t′)

+
∫

dt1 dt2Gα(t, t1)Σ(d)
α (t1, t2)Gα(t2, t′) . (94)

Using a factorization approximation, one obtains:

Σ(d)
α (t, t′) =

1
6

∑
123

∑
1′2′3′

Vα,−1,−2,−3

×δ1,1′ G1(t, t′)Gφ1φ2,φ†
2′φ

†
3′
(t, t′)Vα,−1′,−2′,−3′ . (95)

The density Nα can be in principle calculated as

Nα = 〈φ†αφα〉 ≡ i lim
t′→t+

GRPA
α (t, t′) ≡∫

idE
2π

eiEη+
GRPA

α (E) . (96)

The solution of this problem, i.e. to find self-consistently
the scalar densities, is both formally and numerically very
involved. However, as shown in a separate publication [19]
at least in the symmetry-involved region of the anhar-
monic oscillator, this procedure reproduces to leading or-
der in Y 2 the correct occupation number from the exact
SCRPA ground-state wave function.

5 Further remarks and discussions on the
formalism

It is well known in non-relativistic many-body theory that
standard RPA corresponds to a bosonization either of
pairs of fermion operators or pairs of boson operators.
As a matter of fact, the RPA has first been invented for
Fermi systems and the bosonization of boson pair oper-
ators has appeared much later in the literature [20,21].
However, in any case the bosonization of boson pair oper-
ators (which are themselves NOT ideal bosons) goes along
the same lines as in the fermion case [22] and also the
generalization to relativistic field theory [6] presents no
particular obstacle (as a specific example, the bosoniza-
tion technics has extensively been studied in the case of
the NJL model, see, e.g., [23]). In doing so, one would
naturally replace the boson pair operators present in the
definition of the Green’s function (29) by ideal boson op-
erators, that is for example bq+b′q

+ → Bqq′+, with Bqq′+

being an ideal boson operator. With such a bosonization
scheme the equation of motion for the Green’s function
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corresponding to eq. (29) would lead to an inhomogeneity
Nab in the Dyson equation (32) which contains only unit
operators on the diagonal. Inspection of eq. (32), however,
reveals that Nab contains in addition one-body expecta-
tion values. This fact stems from the particular feature
that in our approach we do not bosonise but stay with
the original boson pair operators. Contrary to the usual
two-body Green’s function technique, the boson pair op-
erators are, however, taken to be at equal times and not
at two different times. This means that we single out the
S-channel. It is not widely known that an exact integral
equation for such two-body two-time Green’s functions
can be established analogous to the Dyson equation in
the one-body case. The mass operator of this “two-body
Dyson equation” presents, as in the one-body case, an
instantaneous mean-field–type part and a truly dynami-
cal part depending on the energy. Neglecting the latter
leads precisely to the self-consistent equation (32). It has
turned out that in this way, working with pairs of fermion
or boson operators without bosonization, allows to bet-
ter respect the Pauli principle and in the case of fermions
this has given excellent results in a series of applications to
non-trivial models where comparison with exact solutions
was available [14,20,24]. There is no reason not to believe
that this advantage should not carry over to the case of
relativistic interacting boson fields. In the relativistic case,
however, our ansatz (29) for the Green’s function has the
disadvantage that it is not manifestly covariant and this is
certainly at the origin of some difficulties we encountered
in this respect and which we have discussed in the main
text. However, as we have shown in sect. 4, even standard
RPA has, in our model at least, some difficulties with co-
variance. Further studies are necessary to elucidate this
point and eventually to cure it. We believe nevertheless
that the results we have found in the present study are
encouraging and that we will be able to apply our theory
in future work as successfully to relativistic field theory as
we did already in the past for the non-relativistic many-
body problem.

6 Conclusion

In this work we have tried to make the first step in elab-
orating an extension of the RPA theory, which has been
very successful in the context of the non-relativistic many-
body problem [13,15–17,24], to relativistic field theory.
Applications of the standard RPA to the relativistic field
theory has emerged in the recent past and proven its great
potential interest [4–6]. The main quality of the RPA ap-
proach is to sum a certain class of diagrams (the rings) to
all order and by the same token to restore spontaneously
broken symmetries and to fulfill the conservation laws.
The drawback of standard RPA is to ignore, at a cer-
tain step of its derivation, correlations in the vacuum (the
quasi-boson approximation). This often entails a rather
strong overbinding of the ground state. To avoid this
approximation is the aim of the afore-mentioned exten-
sion of RPA leading to the so-called self-consistent RPA
(SCRPA). An intermediate but considerably less compli-

cated version of this theory is the so-called renormalized
RPA (r-RPA) where, with respect to standard RPA, only
the occupation numbers are modified due to ground-state
correlations. It is this latter version which we have tried
to develop here in the context of relativistic field theory
with application to the ϕ4 theory in 1 + 1 dimension. We
have studied the transition to a symmetry broken phase in
varying the coupling constant. We have found a very slight
first-order phase transition and concluded that it will turn
to second order, as it is expected in this model, once fur-
ther correlations of the SCRPA are included. This opinion
stems from the fact that going from the mean-field the-
ory (Gaussian approximation) to the r-RPA solution the
first-order character of the transition has been very much
attenuated. We also point out a certain number of difficul-
ties with the extension of RPA to relativistic field theory
for bosons. This concerns for instance the fact that the ap-
proach is not manifestly covariant. Although the standard
RPA yields at the end a covariant solution for the single-
particle mode, surprisingly we found that it has difficulties
for the calculation of the correlation energy with respect
to covariance. Apparently this had not been noticed be-
fore. At the r-RPA level we find that covariance is violated
already for the single-particle mode and we have to restore
it by an ad hoc but natural assumption. It will be an inter-
esting further study whether SCRPA inherently violates
covariance or whether this is due to the approximations we
have been forced to introduce. Another open question to
be studied in the future concerns renormalization. In the
present model study this difficulty was absent since the ϕ4

theory in 1 + 1 dimensions is super-renormalizable. How-
ever, in the general case, this problem has obviously to be
mastered. Finally, a detailed comparison of the diagram-
matic content of the RPA and the cluster expansion [7], in
the context of relativistic bosonic theories with a broken
symmetry, would be certainly of great interest.

In short we have applied for the first time an exten-
sion of the RPA theory, which turns out to be successful in
the non-relativistic many-body problem, to a relativistic
but schematic field-theoretic model. Although some prob-
lems are still present, we believe that our results are quite
encouraging. Studies for the resolution of the remaining
problems are under way.

We would like to thank Z. Aouissat for very useful discussions
concerning various aspects of SCRPA and its application to
field-theoretical problems.

Appendix A.

In this appendix we list the explicit expressions for the
Green’s functions. For this purpose we introduce various
quantities:

I
(1)
ββ′(E) =

1
2εβ

1
2εβ′

εβ Nβ + εβ′ Nβ′

E − εβ − εβ′ + iη
,

I
(2)
ββ′(E) =

εβ − εβ′

2 εβ εβ′

εβ Nβ − εβ′ Nβ′

E2 − (εβ − εβ′)2 + iη
,
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I
(3)
ββ′(E) = − 1

2εβ
1

2εβ′

εβ Nβ + ε′β Nβ′

E + εβ + εβ′ − iη
. (A.1)

We also introduce the loop integrals

I(i)α (E) =
1
V

∑
ββ′

δα−β−β′ I
(i)
ββ′(E) ,

Iα(E) = I(1)α (E) + I(2)α (E) + I(3)α (E) . (A.2)

In particular, for α corresponding to the momentum �P ,
one has the explicit expression

I(E, �P ) ≡ Iα=�P (E) =
∫

d�k1 d�k2
(2π)d

δ(d)
(
�P − �k1 − �k2

)

×
[
ε1 + ε2
2 ε1 ε2

ε1 N1 + ε2 N2

E2 − (ε1 + ε2)
2 + iη

− ε1 − ε2
2 ε1 ε2

ε1 N1 − ε2 N2

E2 − (ε1 − ε2)2 + iη

]
. (A.3)

For the one-particle Green’s functions one obtains

Gαα′†(E) = δα,α′
E + εα + Σα(E)

2εα

2εα
Gα(E) ,

G−α†−α′(E) = δα,α′
−E + εα + Σα(E)

2εα

2εα
Gα(E) ,

G−α†α′†(E) = Gα−α′(E) = δα,α′
Σα(E)
4ε2α

Gα(E), (A.4)

where the full propagator is

Gφαφ†
α′
(E) = δα,α′ Gα(E) = δα,α′

(
E2−ε2α−Σα(E)

)−1
.

(A.5)
The mass operator being given by

Σα(E) =
b2 s2

2
Iα(E)

1− b
2 Iα(E)

. (A.6)

For what concerns the 2p-1h and 2p-2p Green’s
functions we introduces indices i to label the destruc-
tion (creation) operators: 1 = β, β′(β†, β′†), 2 =
(β,−β′†)sym((β†,−β′)sym) and 3 = −β†,−β′†(−β,−β′).
The results are:

G
(i)

ββ′,α†(E) = G
(i)

α†,ββ′(E) =

b s√
V
δα−β−β′

I
(i)
ββ′(E)

1− b
2 Iα(E)

(
E + εα
2 εα

)
Gφαφ†

α
(E) ,

G
(i)
ββ′,−α(E) = G

(i)
−α,ββ′(E) =

b s√
V
δα−β−β′

I
(i)
ββ′(E)

1− b
2 Iα(E)

(−E + εα
2 εα

)
Gφαφ†

α
(E) ,

(A.7)

G
(ij)
ββ′, γγ′(E) = I

(i)
ββ′(E) δi,j (δβγ δβ′γ′ + δβγ′ δβ′γ)

+
b

V

∑
α

δα−β−β′I
(i)
ββ′(E) δα−γ−γ′I

(i)
γγ′(E)

1− b
2 Iα(E)

+
b2 s2

V

∑
α

δα−β−β′I
(i)
ββ′(E) δα−γ−γ′I

(i)
γγ′(E)(

1− b
2 Iα(E)

)2 Gφαφ†
α
(E).

(A.8)
References
1. P. Ring, P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, 1980).
2. P.M. Stevenson, Phys. Rev. D 30, 1712 (1984); 32, 1389

(1985); Y. Birhaye, M. Consoli, Phys. Lett. B 157, 48
(1985); P.M. Stevenson, Z. Phys. C 35, 467 (1987); P.M.
Stevenson, B. Allès, R. Tarrach, Phys. Rev. D 35, 2407
(1987); A.K. Kerman, C. Martin, D. Vautherin, Phys. Rev.
D 47, 632 (1993); G. Amelino-Camelia, Phys. Lett. B 407,
268 (1997) and references therein.

3. A.K. Kerman, D. Vautherin, Ann. Phys. (N.Y.) 192, 408
(1989); C. Martin, D. Vautherin, hep-ph/9401261; I.I. Ko-
gan, A. Kovner, Phys. Rev. D 52, 3719 (1995) and refer-
ences therein.

4. V. Dmitrasinovic, J.A. McNeil, J.R. Shepard, Z. Phys. C
69, 35 (1996).

5. Z. Aouissat, G. Chanfray, P. Schuck, J. Wambach, Nucl.
Phys. A 603, 458 (1996).

6. Z. Aouissat, P. Schuck, J. Wambach, Nucl. Phys. A 618,
402 (1997).
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